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 ABSTRACT: This paper investigates the dynamics response to non-uniform simply supported prestressed Bernoulli-
Euler beam resting on bi-parametric subgrades, in particular, Pasternak subgrades and traversed by concentrated 
moving loads. The solution technique is base on the Galerkin Method and a modification of the Struble’s technique. 
The deflection of the prestressed beam is calculated for several values of foundation modulus K, shear modulus G and 
axial force N and shown graphically. It is found that as the foundation modulus increases with fixed values of shear 
modulus and axial force, the displacement response of the beam decreases. Also, as the shear modulus increases 
with fixed values of axial force and foundation modulus, results show that the deflection of the beam model decreases. 
Finally, the response amplitudes of the beam model decreases with increases in the values of axial force for fixed 
values of shear modulus and foundation modulus . It was also observed that higher values of shear modulus  is 
required for a more noticeable effect than that of the foundation modulus . Further more, the moving force solution is 
not an upper bound for an accurate solution of the moving mass problem. 

Keywords: Non-uniform beam, Pasternak subgrades, Axial force, shear modulus, foundation modulus, moving force, 
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1.   Introduction 
In recent years, considerable attention has been 
given to the response of elastic beams on an 
elastic foundation which is one of the structural 
engineering problems of theoretical and 
practical interest. The structures Engineers in 
this circumstance faces the non-trivial problem 
posed by the singularity  in the inertia of the 
system, a singularity which depends on spatial 
and time variables, consequently the problem 
did and still continues to attract the attention of 
researchers, Engineers and scientist. The 
problem of analysing the behaviour of a 

uniform elastic beam resting on Winkler 
foundation under the influence of a moving 
load has been studied in various field of 
engineering, applied mathematics as well as 
applied physics. Over the years, this moving 
load problem has attracted much attention of a 
large number of investigators [1 – 10]. As a 
matter of fact, there are many designs involving 
moving loads in one form or the other. An 
extensive review of moving load problems has 
been reported by Frybal [10] in his excellent 
monograph. However, work on the dynamic 
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response of non-uniform elastic beam resting 
on bi-parametric sub-grades under the influence 
of moving concentrated loads is scanty. This is 
perhaps due to the facts, unlike the case of a 
uniform beam, the beam’s properties such as 
length does not vary with span L of the beam. 
Nonetheless, the vibration of non uniform beam 
is of practical importance. For instance the 
cross section of some structural members such 
as bridge, girders, hull of ships, concrete slab 
etc, vary from one point to another along the 
structural member. 

Furthermore, Gbadeyan and Idowu [11] study 
the dynamic response to moving concentrated 
masses of elastic plates on a non-Winkler elastic 
foundation. Oni [12] considered flexural 

motions of a uniform beam under the actions of 
concentrated mass travelling with variable 
velocity. Abu [13] considered the dynamic 
response of a Double uniform Euler-Bernoulli 
beam due to a moving constant load. 
In a more recent time, many researchers like Oni 
and Ogunbamike [14], Liu and Chang [15], Oni 
and Omolofe [16] and Gbadeyan et al [17] had 
tremendously work on the dynamics of elastic 
systems under moving loads. This paper is 
concerned with the dynamic response to moving 
concentrated load of non-uniform simply 
supported pre-stressed Bernoulli-Euler beam 
resting on bi-parametric sub-grades, in 
particular, Pasternak sub-grades. 

    
 

2.  FORMULATION OF THE PROBLEM 
        Consider a structure whose displacement is given by the equation [10] 
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This is the case if the structure is a non-
uniform beam under tensile stress 
resting on Pasternak subgrades 
executing flexural vibration according to 
the simple Bernoulli-Euler theory of 
flexure. 
The following symbols have been used 
in equation (2.1) 
 
V(x, t) is the transverse displacement, 

),( txPf is the moving force 
N is the constant axial force 
I(x) is the variable moment of inertia 

)(xµ is the variable mass per unit length 
of the beam 

EI(x) is the variable flexural rigidity of 
the beam 
K is the foundation modulus 

dt
d

 is the substantive acceleration 

operator 
g is the acceleration due to gravity. 
G is the shear modulus 
and x and t are respectively spatial and 
time coordinates. 
The structure under consideration is 
simply supported. Thus, the boundary 
conditions are  
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While the associated initial conditions of the motion are 
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Furthermore, the operator 
dt
d

used in (2.1) is defined as 
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while the moving force ),( txPf acting on the beam is chosen as 

)(),( ctxMgtxPf −= δ                        (2.5) 
By substituting equations (2.4) and (2.5) into (2.1) one obtains 
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As an example [10], let the variable moment of inertia and the variable mass per unit length of the beam 
be defined respectively as 
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Where 0I  and 0µ are constants moment of 
inertia and constant mass per unit length of the 
corresponding uniform beam respectively. By 

expanding the first term of equation (2.6) and 
substituting equation (2.7), after some 
simplification and re-arrangement, the equation 
of motion can be written as 
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 Equation (2.8) is a non-homogeneous 
partial differential equation with variable 
coefficient. Evidently, the method of separation 
of variables is inapplicable as a difficulty arises 
in getting separate equation whose functions are 
functions of a single variable. 

 

 

3.0 METHOD OF SOLUTION 

As a result of the foregoing difficulty, an 

approximate solution is sought. One of the 

approximate methods best suited for solving 

diverse problems in dynamics of structures is the 

Galerkin’s method [10]. This method requires 

that the solution of equation (2.8) takes the form  
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Where )(xYm is chosen such that all the boundary conditions (2.2a) and (2.2b) are satisfied. Equation (3.1) 

when substituted into equation (2.8) yields 
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In order to determine  )(tmW , it is required that the expression on the left hand side of equation  

(3.2) be orthogonal to the function )(xYk . Hence 
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Since our elastic system has simple supports at the edges x=0 and x=L,  

we choose 
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Substituting (3.4), (3.5) and (3.6) into (3.3). After some simplification and rearrangement and ignoring the 

summation sign to obtains 
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By evaluating the integrals and substituting the results into (3.7) after some simplification and 

rearrangement to obtain 
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Equation (3.15) is the fundamental equation of our problem. Two special cases of (3.15) are discussed 

below. 

 

Case1: Simply supported non-uniform Bernoulli Euler beam transverse by moving force. 
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When we set 0=∀ in (3.15), we obtain response of the simply supported non-uniform Bernoulli-Euler 

beam subjected to a moving force. Equation (3.15) reduces to  

L
ctkPSintWBtB mmW π

=+
••

)()( 1211
   

 (3.23) 

Equation (3.23) can be re-written as 

L
ctkSin

B
PtWt mfmW πβ
11

2 )()( =+
••

   
 (3.33) 

where 

11

122

B
B

f =β     (3.34) 

Solving equation (3.33) in conjunction with the initial conditions, we obtains the expression for )(tWm  as 
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Equation (3.36) represents the response of a moving force for non-uniform simply supported Bernoulli-

Euler beam resting on bi-parametric sub-grades. 

 

CaseII: Simply supported non-uniform Bernoulli-Euler beam transverse by moving mass.  
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When we set ≠∀ 0 in equation (3.15), we have the moving mass problem written as
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Rearrangement of (3.37) to obtain 
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By using (3.39) into (3.30), we obtains  
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Where terms to )(0 2∀ are neglected. 

We now employed struble’s method to get the 

modified frequency corresponding to the 

frequency of the free system due to the presence 

of the moving mass. An equivalent free system 

operator defined by the modified frequency then 

replaces equation (3.40). We set the right hand 

side of (3.40) to zero and a parameter 10 <∀ is 

considered for any arbitrary ratio ∀ , defined as  
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Using (3.42) in (3.40), we have  
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We assume a solution to the homogeneous part of (3.43) to be of the form 
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Using (3.44) with its derivatives in homogeneous part of (3.43) while neglecting terms of )(0 2
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By equating the coefficient of )],([)],([ tmtCosandtmtSin ff θβθβ −−  to zero, we have the 

variational equations as 
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From (3.46), we have 
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where mθ  is a constant. 

Substituting (3.48) and (3.49) in (3.44), we have the first approximation to the homogeneous system as  
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Is the modified frequency of the free system due 

to the presence of the moving mass. The non-

homogeneous equation (3.43) is solved by 

replacing the differential operator which acts on 

)(tWm  with the equivalent free system operator 

defined by the modified frequency, fα   that is; 
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Equation (3.52) is analogous to equation (3.33). We thus infer its solution as  
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        5.  ANALYSIS OF RESULTS 

 
       The response amplitude of a dynamical 
system such as this may grow without bound. 
Conditions under which this happens are 
termed resonance conditions. Evidently, from 

equation (3.36), the non-uniform Bernoulli-
Euler beam response under a moving force will 
grow witnout bound whenever. 
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L

ck
f

πβ =                                                                                                         (5.1) 

 
while from equation (3.54), the same Bernoulli-Euler beam traversed by a moving mass 
encounter a resonance effect at  
 

                 
L

ck
f

πα =  

                                                                                                                                        (5.2) 
From equation (3.51) we have  
       

                               0
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22222

4
∀








 +
−=

LB
Lmc

f

f
ff β

βπ
βα                                                                               

(5.3) 

It can be deduced from equation (5.3) that, for 
the same natural frequency, the critical speed for 
the system of Bernoulli-Euler beam traversed by 
a moving mass is smaller than that of the same 
system traversed by a moving force. Thus, for 

the same natural frequency of the Bernoulli-
Euler beam, the resonance is reach earlier by 
considering the moving mass system than by 
moving force system.   

 

 

 

6. NUMERICAL CALCULATIONS AND DISCUSSIONS OF RESULTS 

In this section, numerical results for the non-
uniform simply supported Bernoulli-Euler beam 
are presented in plotted curves. An elastic beam 
of length 12.192m is considered. Other values 
used are modulus of elasticity E = 2.10924 x 
1010N/m2, the moment of inertia I = 2.87698 x 
10-3m and mass per unit length of the beam µ = 

3401.563Kg/m. The value of the foundation 
constant (k) is varied between ON/m3 and 
400000N/m3, the value of axial force N is varied 
between ON and 2.0 x 108N, the values of the 
shear modulus (G) varied between ON/m3 and 900 
000N/m3. The results are as shown in the various 
graphs below. 
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Fig 6.1: Deflection profile of a Simply Supported Non-Uniform Bernoulli-Euler Beam under moving 
force for fixed values of Shear modulus (G=90000), Foundation Modulus (k=40000) and various values 
of Axial Force (N) 

 
  
 
 

 

 

 

 

 

 

Fig 6.2: Deflection profile of a Simply Supported Non-Uniform Bernoulli-Euler Beam under moving 
force for fixed values of Shear modulus (G=90000), Axial force (N=20000) and various values of 
Foundation modulus (K) 
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Fig 6.3: Deflection profile of Simply Supported Non-Uniform Bernoulli Euler Beam Transverse by 
Moving force for  fixed value of Axial Force (N=20000), Foundation Modulus (G=40000) and various 
values of Shear Modulus (G) 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig 6.4: Deflection profile of a Simply Supported Non- Uniform Bernoulli-Euler Beam under moving 
mass for fixed values of Shear modulus (G=90000), Foundation Modulus (k=40000) and various values 
of Axial Force (N). 
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Fig 6.5: Deflection profile of a Simply Supported Non-Uniform Bernoulli-Euler Beam under moving 
mass for fixed values of Shear modulus (G=90000), Axial force (N=20000) and various values of 
Foundation modulus (K) 

 

 

 

 

 

 

 

 

 

 

 

Fig 6.6: Deflection profile of Simply Supported Non-Uniform Bernoulli Euler Beam Transverse by 
Moving mass for  fixed value of Axial Force (N=20000), Foundation Modulus (G=40000) and various 
values of Shear Modulus (G) 
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Fig (6.7): Comparison of the Deflection profile of moving force and moving mass cases of Simply 
Supported Non-Uniform Bernoulli-Euler Beam with foundation modulus (K=400000), Shear Modulus 
(G=90000) and Axial Force (N=20000). 

   

  

7.     Conclusion 

        In this paper, the problem of the dynamic 
response to moving concentrated load of a 
prestressed non-Uniform Simply Supported 
Bernoulli-Euler beam resting on bi-parametric 
subgrades, in particular, Pasternak subgrades has 
been solved. The approximate analytical 
solution technique is based on the Galerkin’s 
method, Laplace transformation and convolution 
theory and finally modification of the Struble’s 
asymptotic method. Analytical solutions and 
Numerical analysis show that, the critical speed 
for the same system consisting of a pre-stressed 
non-uniform simply supported Bernoulli-Euler 
beam resting on bi-parametric subgrades, in 
particular, Pasternak subgrades and traversed by 
a moving mass is smaller than that traversed by 

a moving force and this shows that, moving 
force solution is not an upper bound for the 
accurate solution of the moving mass problem. 
Furthermore, an increase in the foundation 
modulus K with fixed values of shear modulus 
G and axial force N reduces the amplitudes of 
vibration of the beam. Also, the amplitudes of 
vibration decreases with an increases in the 
values of the shear modulus with fixed values of 
foundation modulus and axial force. Also, 
increase in the values of the axial force with 
fixed values of shear modulus and foundation 
modulus. Finally, it was observed that, higher 
values of shear modulus are required for a more 
noticeable effect than that of the foundation 
modulus.                        
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